
Max Katz, August 23, 2017

ADAPTIVE MESH REFINEMENT 
FOR EXASCALE



2

ASTROPHYSICS AND COSMOLOGY

AMR-ENABLED SCIENCE

COMBUSTION

MULTIPHASE FLOWACCELERATORS



3

AMREX

Block-structured AMR

Solution state defined on hierarchy of levels

Levels are unions of (logically) rectangular grids

Grids are dynamically adjusted

Data is in the form of

Zone center/edge/corner data

Particles



4

ON-NODE CPU PERFORMANCE

Standard approaches for per-core performance

Vectorization, code transformation, autotuning

Logical tiling used to improve serial, parallel performance

Data layout unchanged; different unit of work

Tiling is hidden in iterator over mesh patches

Leads to more efficient memory access

Data provided by Weiqun Zhang



5

AMREX GRID ITERATOR APPROACH

for (MFIter mfi(state); mfi.isValid(); ++mfi) 

{

box = mfi.tilebox();

local_state = state[mfi];

evolve(local_state, box);

}

This iterator is configured to loop over grids or tiles, and could do particles instead



6

AMREX ASTROPHYSICS CODES

Castro: compressible hydrodynamics, 

self-gravity, nuclear reactions

Maestro: low-Mach number hydrodynamics, 

self-gravity, nuclear reactions

Nyx: cosmological hydrodynamics



7

PERFORMANCE ANALYSIS TEST APPLICATION

StarLord: mini-app version of Castro hydrodynamics

Sedov blast wave with an astrophysical twist

13 fluid species

Realistic astrophysical equation of state

Method of lines integration

Performance measured with standard Figure of Merit

FOM == zones evolved per microsecond

Usually measured with 1283 to 2563 zones on the grid



8

MINI-APP TEST RESULTS ON KNL

OpenMP only: Peak FOM = 0.6 zones/μsec

MPI + OpenMP (16 x 16): Peak FOM = 0.75

Affinity matters at high thread counts

Performance limited by lack of tiling



9

PARTICLE SCALING RESULTS ON KNL

WarpX electromagnetic PIC code is 
currently being ported to AMReX

Particles are sorted into local tiles 
for cache-friendliness

Reductions done on cell-by-cell basis 
for multithreading effectiveness

Data provided by Andrew Myers



10

EVALUATING A GPU STRATEGY

Use Unified Memory and C++ iterators to hide complexities of data motion

Keep data resident as long as possible to avoid transfer costs

Initial MPI approach: rely on managed memory to do the right thing

Evaluating approach with traditional (non-managed) memory

CUDA Fortran used to offload compute onto the device with minimal code markup

We will also examine OpenMP and OpenACC for offloading



11

GRID LOOPING STRATEGY FOR THE GPU

for (MFIter mfi(state); mfi.isValid(); ++mfi) 

{

local_state = state[mfi];

box = mfi.tilebox();

evolve(local_state, box);

}

++mfi: asynchronously 
perform operations for 

each grid (e.g. reductions)

state[mfi]: prefetch the data 
from this grid to the device

~MFIter: perform device 
synchronize, optionally 

prefetch data back to host

Function call: launch 
device kernel

Grid loop is not tiled



12

MINI-APP TESTING ON SUMMITDEV

IBM Minsky nodes with 20 POWER 8 cores, 4 NVIDIA P100 GPUs at OLCF

Single POWER 8 core: FOM = 0.03 zones/μsec 

20 POWER 8 cores: Peak FOM = 0.37 zones/μsec

Single P100 Peak FOM: 1.2 zones/μsec for single grid

Scaling to four GPUs: FOM = 3.1 zones/μsec (1283), 3.8 zones/μsec (1923)



13

AMREX COLLABORATORS

LBL: Ann Almgren, Vince Beckner, John Bell, Marc Day, Andrew Myers, Brian Friesen, 
Andy Nonaka, Weiqun Zhang

Stony Brook: Maria Barrios-Sazo, Don Willcox, Mike Zingale

MSU: Adam Jacobs

LANL: Chris Malone

https://github.com/AMReX-Codes

https://github.com/AMReX-Astro

https://github.com/AMReX-Codes
https://github.com/AMReX-Astro



